Local existence and uniqueness of solutions to the time-dependent Kohn–Sham equations coupled with classical nuclear dynamics

Björn Baumeier, Onur Çaylak, Carlo Mercuri, Mark Peletier, Georg Prokert, Wouter Scharpach (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Downloads (Pure)

Samenvatting

We prove the short-time existence and uniqueness of solutions to the initial-value problem associated with a class of time-dependent Kohn–Sham equations coupled with Newtonian nuclear dynamics, combining Yajima's theory for time-dependent Hamiltonians with Duhamel's principle, based on suitable Lipschitz estimates. We consider a pure power exchange term within a generalisation of the so-called local-density approximation, identifying a range of exponents for the existence and uniqueness of H2 solutions to the Kohn–Sham equations.

Originele taal-2Engels
Artikelnummer128688
Aantal pagina's33
TijdschriftJournal of Mathematical Analysis and Applications
Volume541
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 15 jan. 2025

Vingerafdruk

Duik in de onderzoeksthema's van 'Local existence and uniqueness of solutions to the time-dependent Kohn–Sham equations coupled with classical nuclear dynamics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit