Local clustering in scale-free networks with hidden variables

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)
39 Downloads (Pure)

Samenvatting

We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ(2,3), so that the degrees have infinite variance. The natural cutoff hc characterizes the largest degrees in the hidden variable models, and a structural cutoff hs introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N, as a function of hs and hc. For scale-free networks with exponent 2

Originele taal-2Engels
Artikelnummer022307
Aantal pagina's13
TijdschriftPhysical Review E
Volume95
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 14 feb 2017

    Vingerafdruk

Citeer dit