LLRSymNet: A Low-Complex Neural Network for LLR Estimation Through Symmetry Exploitation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

In wireless communication receivers, soft demodulation translates the noisy received symbols into soft decision information, typically in the form of Log Likelihood Ratios (LLR). Of late, Neural Network (NN)-based demodulators show promise, offering improved performance. However, there is a growing concern about the rising complexity in NN based LLR estimation, particularly with denser modulation schemes. This increased complexity leads to higher area and power consumption, posing challenges for efficiency in edge device applications. To address this issue, this paper proposes a novel NN architecture named LLRSymNet, which works by exploiting the symmetries found in the LLR functions of the bits in the received symbols, which stems from the symmetries present in the modulation constellations used for transmission. By doing so, it reduces the computational complexity compared to existing NN-based soft demodulators. Experimental evaluation of LLRSymNet within the DVB-S.2 receiver system demonstrates performance enhancements and achieves complexity reductions of up to 75% for M-PSK and M-APSK modulation schemes, and up to 81% for denser M-QAM modulations, compared to conventional NN architectures.
Originele taal-2Engels
TitelGLOBECOM 2024 - 2024 IEEE Global Communications Conference
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's2377-2382
Aantal pagina's6
ISBN van elektronische versie979-8-3503-5125-5
DOI's
StatusGepubliceerd - 11 mrt. 2025
Evenement2024 IEEE Global Communications Conference, GLOBECOM 2024 - Cape Town, Zuid-Afrika
Duur: 8 dec. 202412 dec. 2024

Congres

Congres2024 IEEE Global Communications Conference, GLOBECOM 2024
Verkorte titelGLOBECOM 2024
Land/RegioZuid-Afrika
StadCape Town
Periode8/12/2412/12/24

Vingerafdruk

Duik in de onderzoeksthema's van 'LLRSymNet: A Low-Complex Neural Network for LLR Estimation Through Symmetry Exploitation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit