Liver segmentation and metastases detection in MR images using convolutional neural networks

Mariëlle J.A. Jansen (Corresponding author), Hugo J. Kuijf, Maarten Niekel, Wouter B. Veldhuis, Frank J. Wessels, Max A. Viergever, Josien P.W. Pluim

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
153 Downloads (Pure)


Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of two false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases.

Originele taal-2Engels
Aantal pagina's10
TijdschriftJournal of Medical Imaging
Nummer van het tijdschrift4
StatusGepubliceerd - 1 okt 2019


Duik in de onderzoeksthema's van 'Liver segmentation and metastases detection in MR images using convolutional neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit