Linear cutting blocking sets and minimal codes in the rank metric

Gianira N. Alfarano (Corresponding author), Martino Borello, Alessandro Neri, Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

17 Citaten (Scopus)
113 Downloads (Pure)

Samenvatting

This work investigates the structure of rank-metric codes in connection with concepts from finite geometry, most notably the q-analogues of projective systems and blocking sets. We also illustrate how to associate a classical Hamming-metric code to a rank-metric one, in such a way that various rank-metric properties naturally translate into the homonymous Hamming-metric notions under this correspondence. The most interesting applications of our results lie in the theory of minimal rank-metric codes, which we introduce and study from several angles. Our main contributions are bounds for the parameters of a minimal rank-metric codes, a general existence result based on a combinatorial argument, and an explicit code construction for some parameter sets that uses the notion of a scattered linear set. Throughout the paper we also show and comment on curious analogies/divergences between the theories of error-correcting codes in the rank and in the Hamming metric.

Originele taal-2Engels
Artikelnummer105658
Aantal pagina's44
TijdschriftJournal of Combinatorial Theory, Series A
Volume192
DOI's
StatusGepubliceerd - nov. 2022

Bibliografische nota

Publisher Copyright:
© 2022 The Author(s)

Vingerafdruk

Duik in de onderzoeksthema's van 'Linear cutting blocking sets and minimal codes in the rank metric'. Samen vormen ze een unieke vingerafdruk.

Citeer dit