Limited memory gradient methods for unconstrained optimization

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

The limited memory steepest descent method (LMSD, Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher’s method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher’s method can also be interpreted from this viewpoint.

Originele taal-2Engels
TijdschriftNumerical Algorithms
VolumeXX
Nummer van het tijdschriftX
Vroegere onlinedatum26 jul. 2024
DOI's
StatusE-publicatie vóór gedrukte publicatie - 26 jul. 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Limited memory gradient methods for unconstrained optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit