Limit theorems for assortativity and clustering in null models for scale-free networks

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

22 Downloads (Pure)


An important problem in modeling networks is how to generate a randomly sampled graph with given degrees. A popular model is the configuration model, a network with assigned degrees and random connections. The erased configuration model is obtained when self-loops and multiple edges in the configuration model are removed. We prove an upper bound for the number of such erased edges for regularly-varying degree distributions with infinite variance, and use this result to prove central limit theorems for Pearson's correlation coefficient and the clustering coefficient in the erased configuration model. Our results explain the structural correlations in the erased configuration model and show that removing edges leads to different scaling of the clustering coefficient. We then prove that for the rank-1 inhomogeneous random graph, another null model that creates scale-free simple networks, the results for Pearson's correlation coefficient as well as for the clustering coefficient are similar to the results for the erased configuration model.
Originele taal-2Engels
Pagina's (van-tot)1035-1084
Aantal pagina's50
TijdschriftAdvances in Applied Probability
Nummer van het tijdschrift4
StatusGepubliceerd - dec 2020


  • math.PR
  • 05C80, 60F05

Vingerafdruk Duik in de onderzoeksthema's van 'Limit theorems for assortativity and clustering in null models for scale-free networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit