Left invariant evolution equations on Gabor transforms

R. Duits, H. Führ, B.J Janssen

Onderzoeksoutput: Boek/rapportRapportAcademic

121 Downloads (Pure)

Samenvatting

By means of the unitary Gabor transform one can relate operators on signals to operators on the space of Gabor transforms. In order to obtain a translation and modulation invariant operator on the space of signals, the corresponding operator on the reproducing kernel space of Gabor transforms must be left invariant, i.e. it should commute with the left regular action of the Heisenberg group. By using the left invariant vector fields on H3 and the corresponding left-invariant vector fields on a cross-section of the phase space H3/¿ inthe generators of our transport and diffusion equations on Gabor transforms we naturally employ the essential group structure on the domain of a Gabor transform. We shall use these evolutions for three different tasks. First, there is the task of enhancing Gabor transforms (and corresponding signals) by means of non-linear left invariant diffusion. Secondly, there is the task of non-linear adaptive left-invariant convection (reassignment) towards the most probable curves, while maintaining the original signal. Finally, there is the task of extracting the most probable curves in the Gabor domain.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's56
StatusGepubliceerd - 2009

Publicatie series

NaamCASA-report
Volume0909
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Left invariant evolution equations on Gabor transforms'. Samen vormen ze een unieke vingerafdruk.

Citeer dit