Learning the mechanisms of network growth

Lourens Touwen, Doina Bucur, Remco van der Hofstad, Alessandro Garavaglia, Nelly Litvak (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

12 Downloads (Pure)

Samenvatting

We propose a novel model-selection method for dynamic networks. Our approach involves training a classifier on a large body of synthetic network data. The data is generated by simulating nine state-of-the-art random graph models for dynamic networks, with parameter range chosen to ensure exponential growth of the network size in time. We design a conceptually novel type of dynamic features that count new links received by a group of vertices in a particular time interval. The proposed features are easy to compute, analytically tractable, and interpretable. Our approach achieves a near-perfect classification of synthetic networks, exceeding the state-of-the-art by a large margin. Applying our classification method to real-world citation networks gives credibility to the claims in the literature that models with preferential attachment, fitness and aging fit real-world citation networks best, although sometimes, the predicted model does not involve vertex fitness.

Originele taal-2Engels
Artikelnummer11866
Aantal pagina's11
TijdschriftScientific Reports
Volume14
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 24 mei 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Learning the mechanisms of network growth'. Samen vormen ze een unieke vingerafdruk.

Citeer dit