Learning Stable and Robust Linear Parameter-Varying State-Space Models

C. Verhoek, Ruigang Wang, Roland Tóth

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
69 Downloads (Pure)

Samenvatting

This paper presents two direct parameterizations of stable and robust linear parameter-varying state-space (LPV-SS) models. The model parametrizations guarantee a priori that for all parameter values during training, the allowed models are stable in the contraction sense or have their Lipschitz constant bounded by a user-defined value γ . Furthermore, since the parametrizations are direct, the models can be trained using unconstrained optimization. The fact that the trained models are of the LPV-SS class makes them useful for, e.g., further convex analysis or controller design. The effectiveness of the approach is demonstrated on an LPV identification problem.
Originele taal-2Engels
Titel2023 62nd IEEE Conference on Decision and Control, CDC 2023
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1348-1353
Aantal pagina's6
ISBN van elektronische versie979-8-3503-0124-3
DOI's
StatusGepubliceerd - 19 jan. 2024
Evenement2023 62nd IEEE Conference on Decision and Control (CDC) - Singapore, Singapore
Duur: 13 dec. 202315 dec. 2023
Congresnummer: 62

Congres

Congres2023 62nd IEEE Conference on Decision and Control (CDC)
Verkorte titelCDC 2023
Land/RegioSingapore
StadSingapore
Periode13/12/2315/12/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Learning Stable and Robust Linear Parameter-Varying State-Space Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit