Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI

Iris Huijben, Bastiaan S. Veeling, Ruud J.G. van Sloun

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

1 Citaat (Scopus)
13 Downloads (Pure)

Samenvatting

Compressed sensing (CS) MRI relies on adequate undersampling of the k-space to accelerate the acquisition without compromising image quality. Consequently, the design of optimal sampling patterns for these k-space coefficients has received significant attention, with many CS MRI methods exploiting variable-density probability distributions. Realizing that an optimal sampling pattern may depend on the downstream task (e.g. image reconstruction, segmentation, or classification), we here propose joint learning of both task-adaptive k-space sampling and a subsequent model-based proximal-gradient recovery network. The former is enabled through a probabilistic generative model that leverages the Gumbel-softmax relaxation to sample across trainable beliefs while maintaining differentiability. The proposed combination of a highly flexible sampling model and a model-based (sampling-adaptive) image reconstruction network facilitates exploration and efficient training, yielding improved MR image quality compared to other sampling baselines.
Originele taal-2Engels
Pagina's8906-8910
Aantal pagina's5
DOI's
StatusGepubliceerd - mei 2020
Evenement2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Virtual, Barcelona, Spanje
Duur: 4 mei 20208 mei 2020
Congresnummer: 2020
https://2020.ieeeicassp.org/

Congres

Congres2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP
LandSpanje
StadBarcelona
Periode4/05/208/05/20
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI'. Samen vormen ze een unieke vingerafdruk.

Citeer dit