Learning Reduced-Order Linear Parameter-Varying Models of Nonlinear Systems

Patrick J.W. Koelewijn, Rajiv Singh, Peter Seiler, Roland Tóth

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

21 Downloads (Pure)

Samenvatting

In this paper, we consider the learning of a Reduced-Order Linear Parameter-Varying Model (ROLPVM) of a nonlinear dynamical system based on data. This is achieved by a two-step procedure. In the first step, we learn a projection to a lower dimensional state-space. In step two, an LPV model is learned on the reduced-order state-space using a novel, efficient parameterization in terms of neural networks. The improved modeling accuracy of the method compared to an existing method is demonstrated by simulation examples.

Originele taal-2Engels
Pagina's (van-tot)265-270
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume58
Nummer van het tijdschrift15
DOI's
StatusGepubliceerd - 2024
Evenement20th IFAC Symposium on System Identification, SYSID 2024 - Boston, Verenigde Staten van Amerika
Duur: 17 jul. 202419 jul. 2024
Congresnummer: 20

Bibliografische nota

Publisher Copyright:
© 2024 The Authors.

Vingerafdruk

Duik in de onderzoeksthema's van 'Learning Reduced-Order Linear Parameter-Varying Models of Nonlinear Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit