Samenvatting
In this paper, we consider the learning of a Reduced-Order Linear Parameter-Varying Model (ROLPVM) of a nonlinear dynamical system based on data. This is achieved by a two-step procedure. In the first step, we learn a projection to a lower dimensional state-space. In step two, an LPV model is learned on the reduced-order state-space using a novel, efficient parameterization in terms of neural networks. The improved modeling accuracy of the method compared to an existing method is demonstrated by simulation examples.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 265-270 |
Aantal pagina's | 6 |
Tijdschrift | IFAC-PapersOnLine |
Volume | 58 |
Nummer van het tijdschrift | 15 |
DOI's | |
Status | Gepubliceerd - 2024 |
Evenement | 20th IFAC Symposium on System Identification, SYSID 2024 - Boston, Verenigde Staten van Amerika Duur: 17 jul. 2024 → 19 jul. 2024 Congresnummer: 20 |
Bibliografische nota
Publisher Copyright:© 2024 The Authors.