Learning from heterogeneous EEG signals with differentiable channel reordering

Aaqib Saeed, David Grangier, Olivier Pietquin, Neil Zeghidour

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)

Samenvatting

We propose CHARM, a method for training a single neural network across inconsistent input channels. Our work is motivated by Electroencephalography (EEG), where data collection protocols from different headsets result in varying channel ordering and number, which limits the feasibility of transferring trained systems across datasets. Our approach builds upon attention mechanisms to estimate a latent reordering matrix from each input signal and map input channels to a canonical order. CHARM is differentiable and can be composed further with architectures expecting a consistent channel ordering to build end-to-end trainable classifiers. We perform experiments on four EEG classification datasets and demonstrate the efficacy of CHARM via simulated shuffling and masking of input channels. Moreover, our method improves the transfer of pre-trained representations between datasets collected with different protocols.

Originele taal-2Engels
TitelICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1255-1259
Aantal pagina's5
DOI's
StatusGepubliceerd - 2021
Evenement2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Virtual, Toronto, Canada
Duur: 6 jun. 202111 jun. 2021
https://2021.ieeeicassp.org/

Congres

Congres2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Verkorte titelICASSP 2021
Land/RegioCanada
StadVirtual, Toronto
Periode6/06/2111/06/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Learning from heterogeneous EEG signals with differentiable channel reordering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit