Learning based approximate model predictive control for nonlinear systems

D. Gángó, T. Péni, R. Tóth

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

7 Citaten (Scopus)
47 Downloads (Pure)


The paper presents a systematic design procedure for approximate explicit model predictive control for constrained nonlinear systems described in linear parameter-varying (LPV) form. The method applies a Gaussian process (GP) model to learn the optimal control policy generated by a recently developed fast model predictive control (MPC) algorithm based on an LPV embedding of the nonlinear system. By exploiting the advantages of the GP structure, various active learning methods based on information theoretic criteria, gradient analysis and simulation data are combined to systematically explore the relevant training points. The overall method is summarized in a complete synthesis procedure. The applicability of the proposed method is demonstrated by designing approximate predictive controllers for constrained nonlinear mechanical systems.

Originele taal-2Engels
Pagina's (van-tot)152-157
Aantal pagina's6
Nummer van het tijdschrift28
StatusGepubliceerd - 1 jan. 2019
Evenement3rd IFAC Workshop on Linear Parameter Varying Systems, LPVS 2019 - Eindhoven, Nederland
Duur: 4 nov. 20196 nov. 2019


Duik in de onderzoeksthema's van 'Learning based approximate model predictive control for nonlinear systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit