Samenvatting
Leaf Area Index (LAI) is a key parameter in crop growth models, and its accurate estimation is crucial for yield prediction. However, LAI data values are often missing or incomplete due to various reasons, such as sensor failures or cloud cover. In this paper, we propose a set of time series data imputation methods for LAI values derived from satellite images by radiative transfer model (RTM) inversion. The methods perform temporal interpolation either at the level of individual pixels or on spatial aggregates. Our experimental evaluation demonstrates that our approach can be applied to various crop types and has the potential to improve the accuracy and timeliness of yield prediction.
Originele taal-2 | Engels |
---|---|
Titel | Proceedings of the 2023 conference on Big Data from Space (BIDS23) |
Subtitel | From foresight to impact : 6-9 November 2023, Austrian Center, Vienna |
Redacteuren | P. Soille, S. Lumnitz, S. Albani |
Plaats van productie | Luxembourg |
Uitgeverij | Office for Official Publications of the EC |
Pagina's | 373-376 |
Aantal pagina's | 4 |
ISBN van elektronische versie | 978-92-68-08696-4 |
DOI's | |
Status | Gepubliceerd - 2 nov. 2023 |
Evenement | 2023 Conference on Big Data from Space, BiDS’23 - Vienna, Oostenrijk Duur: 6 nov. 2023 → 9 nov. 2023 |
Congres
Congres | 2023 Conference on Big Data from Space, BiDS’23 |
---|---|
Verkorte titel | BiDS’23 |
Land/Regio | Oostenrijk |
Stad | Vienna |
Periode | 6/11/23 → 9/11/23 |