Leaf area index time series imputation for early yield prediction

Christoph Jörges, Jens E. d'Hondt, Georgios Chatzigeorgakidis, Silke Migdall, Christian Miesgang, Susanne Karg, Heike Bach, Panagiotis Betchavas, Dimitrios Skoutas

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Downloads (Pure)

Samenvatting

Leaf Area Index (LAI) is a key parameter in crop growth models, and its accurate estimation is crucial for yield prediction. However, LAI data values are often missing or incomplete due to various reasons, such as sensor failures or cloud cover. In this paper, we propose a set of time series data imputation methods for LAI values derived from satellite images by radiative transfer model (RTM) inversion. The methods perform temporal interpolation either at the level of individual pixels or on spatial aggregates. Our experimental evaluation demonstrates that our approach can be applied to various crop types and has the potential to improve the accuracy and timeliness of yield prediction.
Originele taal-2Engels
TitelProceedings of the 2023 conference on Big Data from Space (BIDS23)
SubtitelFrom foresight to impact : 6-9 November 2023, Austrian Center, Vienna
RedacteurenP. Soille, S. Lumnitz, S. Albani
Plaats van productieLuxembourg
UitgeverijOffice for Official Publications of the EC
Pagina's373-376
Aantal pagina's4
ISBN van elektronische versie978-92-68-08696-4
DOI's
StatusGepubliceerd - 2 nov. 2023
Evenement2023 Conference on Big Data from Space, BiDS’23 - Vienna, Oostenrijk
Duur: 6 nov. 20239 nov. 2023

Congres

Congres2023 Conference on Big Data from Space, BiDS’23
Verkorte titelBiDS’23
Land/RegioOostenrijk
StadVienna
Periode6/11/239/11/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Leaf area index time series imputation for early yield prediction'. Samen vormen ze een unieke vingerafdruk.

Citeer dit