Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
122 Downloads (Pure)

Samenvatting

Lateral interactions are a key factor in the correct description of adsorption isotherms relevant to heterogeneous catalytic reactions. To model these lateral interactions, a large number of monolayer structures have to be investigated, far exceeding the limitations of conventional techniques such as density functional theory. We have developed a new hybrid neural network model that can substitute the electronic structure calculations for these monolayer structures, without significant loss of accuracy. The low computational cost of this model allows the study of the adlayer structures close to industrial operating conditions. Lateral interactions are found to increase at elevated temperatures as a result of increased adsorbate mobility, and this contribution is found to be key in unifying theoretical and experimental observations. We show that the inclusion of dispersion interactions in stabilizing the adlayers is necessary to obtain correct predictions for both isotherms and adsorption site distributions.

Originele taal-2Engels
Pagina's (van-tot)5529-5540
Aantal pagina's12
TijdschriftJournal of Physical Chemistry C
Volume126
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - 31 mrt. 2022

Bibliografische nota

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit