Samenvatting
Optimization of transient models is required in several domains related to thermo-mechanical reliability of electronics, such as Prognostic Health Monitoring (PHM) and design optimization. A novel framework for efficient (local) parameter optimization of transient models in the H2 norm is proposed. The optimization is feasible for large-scale transient models because it approximates the gradient using physics-based model order reduction (MOR), in contrast to existing approaches that typically use data-driven surrogate models such as neural networks. To demonstrate the framework an optimal fixed-order virtual sensor for PHM of a Ball Grid Array (BGA) is numerically determined.
Originele taal-2 | Engels |
---|---|
Titel | Scientific Computing in Electrical Engineering |
Subtitel | SCEE 2022, Amsterdam, The Netherlands, July 2022 |
Redacteuren | Martijn van Beurden, Neil V. Budko, Gabriela Ciuprina, Wil Schilders, Harshit Bansal, Ruxandra Barbulescu |
Plaats van productie | Cham |
Uitgeverij | Springer |
Pagina's | 144-151 |
Aantal pagina's | 8 |
ISBN van elektronische versie | 978-3-031-54517-7 |
ISBN van geprinte versie | 978-3-031-54516-0 |
DOI's | |
Status | Gepubliceerd - 1 mrt. 2024 |
Evenement | Scientific Computing in Electrical Engineering, SCEE 2022 - Amsterdam, Nederland Duur: 11 jul. 2022 → 14 jul. 2022 https://www.scee-conferences.org/ |
Publicatie series
Naam | Mathematics in Industry |
---|---|
Volume | 43 |
ISSN van geprinte versie | 1612-3956 |
ISSN van elektronische versie | 2198-3283 |
Congres
Congres | Scientific Computing in Electrical Engineering, SCEE 2022 |
---|---|
Verkorte titel | SCEE 2022 |
Land/Regio | Nederland |
Stad | Amsterdam |
Periode | 11/07/22 → 14/07/22 |
Internet adres |