Large Population Limit of Interacting Population Dynamics via Generalized Gradient Structures

Anastasiia Hraivoronska, Jasper Hoeksema, Oliver Tse (Corresponderende auteur)

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

Samenvatting

This chapter focuses on the derivation of a doubly nonlocal Fisher-KPP model, which is a macroscopic nonlocal evolution equation describing population dynamics in the large population limit. The derivation starts from a microscopic individual-based model described as a stochastic process on the space of atomic measures with jump rates that satisfy detailed balance w.r.t. to a reference measure. We make use of the so-called “cosh” generalized gradient structure for the law of the process to pass to the large population limit using evolutionary gamma convergence. In addition to characterizing the large population limit as the solution of the nonlocal Fisher-KPP model, our variational approach further provides a generalized gradient flow structure for the limit equation as well as an entropic propagation of chaos result.

Originele taal-2Engels
TitelModeling and Simulation in Science, Engineering and Technology
UitgeverijBirkhäuser Verlag
Pagina's421-460
Aantal pagina's40
DOI's
StatusGepubliceerd - 2024

Publicatie series

NaamModeling and Simulation in Science, Engineering and Technology
VolumePart F3944
ISSN van geprinte versie2164-3679
ISSN van elektronische versie2164-3725

Bibliografische nota

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Vingerafdruk

Duik in de onderzoeksthema's van 'Large Population Limit of Interacting Population Dynamics via Generalized Gradient Structures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit