Lévy-driven polling systems and continuous-state branching processes

O.J. Boxma, J. Ivanovs, K.M. Kosinski, M.R.H. Mandjes

Onderzoeksoutput: Boek/rapportRapportAcademic


In this paper we study an N-queue polling model with switchover times. Each of the queues is fed by a non-decreasing Lévy process, which can be different during each of the consecutive periods within the server's cycle. The N-dimensional Lévy processes obtained in this fashion are described by their (joint) Laplace exponent, thus allowing for non-independent input streams. For such a system we derive the steady-state distribution of the joint workload at embedded epochs, i.e. polling and switching instants. Using the Kella-Whitt martingale, we also derive the steady-state distribution at an arbitrary epoch. Our analysis heavily relies on establishing a link between fl uid (Lévy input) polling systems and multitype Jirina processes (continuous-state discrete-time branching processes). This is done by properly defining the notion of the branching property for a discipline. This definition is broad enough to contain the most important service disciplines, like exhaustive and gated.
Originele taal-2Engels
Plaats van productieAmsterdam
UitgeverijCentrum voor Wiskunde en Informatica
Aantal pagina's16
StatusGepubliceerd - 2009

Publicatie series

NaamCWI Report

Vingerafdruk Duik in de onderzoeksthema's van 'Lévy-driven polling systems and continuous-state branching processes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit