Kinetic kd-trees and longest-side kd-trees

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

We propose a simple variant of kd-trees, called rank-based kd-trees, for sets of points in Rd. We show that a rank-based kd-tree, like an ordinary kd-tree, supports range search queries in O(n1-1/d + k) time, where k is the output size. The main advantage of rank-based kd-trees is that they can be efficiently kinetized: the KDS processes O(n2) events in the worst case, assuming that the points follow constant-degree algebraic trajectories, each event can be handled in O(log n) time, and each point is involved in O(1) certificates. We also propose a variant of longest-side kd-trees, called rank-based longest-side kd-trees (RBLS kd-trees, for short), for sets of points in R2. RBLS kd-trees can be kinetized efficiently as well and like longest-side kd-trees, RBLS kdtrees support nearest-neighbor, farthest-neighbor, and approximate range search queries in O((1/e) log2 n) time. The KDS processes O(n3 log n) events in the worst case, assuming that the points follow constant-degree algebraic trajectories; each event can be handled in O(log2 n) time, and each point is involved in O(log n) certificates.
Originele taal-2Engels
TitelProceedings of the 23rd Annual ACM Symposium on Computational Geometry (SoCG 2007) 6-8 June 2007, Geongju, South Korea
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
Pagina's364-372
ISBN van geprinte versie978-1-59593-705-6
StatusGepubliceerd - 2007
Evenement23rd International Symposium on Computational Geometry (SoCG 2007) - Gyeongju, Zuid-Korea
Duur: 6 jun. 20078 jun. 2007
Congresnummer: 23

Congres

Congres23rd International Symposium on Computational Geometry (SoCG 2007)
Verkorte titelSoCG 2007
Land/RegioZuid-Korea
StadGyeongju
Periode6/06/078/06/07
AnderSoCG 2007, Gyeongju, South Korea

Vingerafdruk

Duik in de onderzoeksthema's van 'Kinetic kd-trees and longest-side kd-trees'. Samen vormen ze een unieke vingerafdruk.

Citeer dit