Kinetic Euclidean 2-centers in the black-box model

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

34 Downloads (Pure)


We study the 2-center problem for moving points in the plane. Given a set P of n points, the Euclidean 2-center problem asks for two congruent disks of minimum size that together cover P. Our methods work in the black-box KDS model, where we receive the locations of the points at regular time steps and we know an upper bound d_max on the maximum displacement of any point within one time step. We show how to maintain a (1 + e)-approximation of the Euclidean 2-center in amortized sub-linear time per time step, under certain assumptions on the distribution of the point set P. In many cases --namely when the distance between the centers of the disks is relatively large or relatively small-- the solution we maintain is actually optimal.
Originele taal-2Engels
StatusGepubliceerd - 2013
Evenement29th European Workshop on Computational Geometry (EuroCG 2013) - Braunschweig, Duitsland
Duur: 17 mrt 201320 mrt 2013
Congresnummer: 29


Workshop29th European Workshop on Computational Geometry (EuroCG 2013)
Verkorte titelEuroCG 2013

Vingerafdruk Duik in de onderzoeksthema's van 'Kinetic Euclidean 2-centers in the black-box model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit