Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems

Thomas de Jong, Mircea Lazar (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Downloads (Pure)

Samenvatting

This letter presents a kernelized offset-free data-driven predictive control scheme for nonlinear systems. Traditional model-based and data-driven predictive controllers often struggle with inaccurate predictors or persistent disturbances, especially in the case of nonlinear dynamics, leading to tracking offsets and stability issues. To overcome these limitations, we employ kernel methods to parameterize the nonlinear terms of a velocity model, preserving its structure and efficiently learning unknown parameters through a least squares approach. This results in a offset-free data-driven predictive control scheme formulated as a nonlinear program, but solvable via sequential quadratic programming. We provide a framework for analyzing recursive feasibility and stability of the developed method and we demonstrate its effectiveness through simulations on a nonlinear benchmark example.

Originele taal-2Engels
Pagina's (van-tot)2877-2882
Aantal pagina's6
TijdschriftIEEE Control Systems Letters
Volume8
DOI's
StatusGepubliceerd - 13 dec. 2024

Bibliografische nota

Publisher Copyright:
© 2017 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit