Kernel bounds for path and cycle problems

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

22 Downloads (Pure)

Samenvatting

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a modulator to a cluster graph, or a (promised) max leaf number. We obtain lower bounds via cross-composition, e.g., for Hamiltonian Cycle and related problems when parameterized by a modulator to an outerplanar graph.
Originele taal-2Engels
TijdschriftarXiv
Nummer van het tijdschrift1106.4141v2 [cs.DS]
StatusGepubliceerd - 21 jun 2011
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Kernel bounds for path and cycle problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit