Kalmannet: Data-Driven Kalman Filtering

Guy Revach, Nir Shlezinger, Ruud J.G. van Sloun, Yonina C. Eldar

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

35 Citaten (Scopus)

Samenvatting

The Kalman filter (KF) is a celebrated signal processing algorithm, implementing optimal state estimation of dynamical systems that are well represented by a linear Gaussian statespace model. The KF is model-based, and therefore relies on full and accurate knowledge of the underlying model. We present KalmanNet, a hybrid data-driven/model-based filter that does not require full knowledge of the underlying model parameters. KalmanNet is inspired by the classical KF flow and implemented by integrating a dedicated and compact neural network for the Kalman gain computation. We present an offline training method, and numerically illustrate that KalmanNet can achieve optimal performance without full knowledge of the model parameters. We demonstrate that when facing inaccurate parameters KalmanNet learns to achieve notably improved performance compared to KF.

Originele taal-2Engels
TitelICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3905-3909
Aantal pagina's5
ISBN van elektronische versie978-1-7281-7605-5
DOI's
StatusGepubliceerd - 2021
Evenement2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Virtual, Toronto, Canada
Duur: 6 jun. 202111 jun. 2021
https://2021.ieeeicassp.org/

Congres

Congres2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Verkorte titelICASSP 2021
Land/RegioCanada
StadVirtual, Toronto
Periode6/06/2111/06/21
Internet adres

Bibliografische nota

Publisher Copyright:
©2021 IEEE.

Financiering

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 646804-ERC-COG-BNYQ, and from the Israel Science Foundation under grant No. 0100101. G. Revach is with the Signal Processing Laboratory (ISI), Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland (e-mail: [email protected]). N. Shlezinger is with the School of ECE, Ben-Gurion University of the Negev, Beer Sheva, Israel (e-mail: [email protected]). R. J. G. van Sloun is with the EE Dpt., Eindhoven University of Technology, and with Phillips Research, Eindhoven, The Netherlands (e-mail: [email protected]). Y. C. Eldar is with the Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel (e-mail: [email protected]).

Vingerafdruk

Duik in de onderzoeksthema's van 'Kalmannet: Data-Driven Kalman Filtering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit