Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems

M.E. Hochstenbach, A. Muhic, Bor Plestenjak

Onderzoeksoutput: Boek/rapportRapportAcademic

144 Downloads (Pure)

Samenvatting

We propose Jacobi-Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k+1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k^2n is relatively small, the problem can be solved numerically by computing the common regular part of the related pair of singular pencils. For large k^2n, computing all solutions is not feasible and iterative methods are required. When k is large, we propose to linearize the problem first and then apply Jacobi-Davidson to the obtained singular two-parameter eigenvalue problem. The resulting method may for instance be used for computing zeros of a system of scalar bivariate polynomials close to a given target. On the other hand, when k is small, we can apply a Jacobi-Davidson type approach directly to the original matrices. The original matrices are projected onto a low-dimensional subspace, and the projected polynomial two-parameter eigenvalue problems are solved by a linearization. Keywords: Polynomial two-parameter eigenvalue problem (PMEP), quadratic two-parameter eigenvalue problem (QMEP), Jacobi-Davidson, correction equation, singular generalized eigenvalue problem, bivariate polynomial equations, determinantal representation, delay differential equations (DDEs), critical delays.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's18
StatusGepubliceerd - 2015

Publicatie series

NaamCASA-report
Volume1519
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit