Iterative learning control of supersaturation in batch cooling crystallization

M. Forgione, A. Mesbah, X. Bombois, P.M.J. Hof, Van den

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)


An Iterative Learning Control (ILC) algorithm for supersaturation control in batch cooling crystallization is presented in this paper. The ILC controller is combined with a PI controller in order to reject the disturbances present in the thermal dynamics as much as possible. Convergence and robustness properties of the proposed ILC+PI control scheme are investigated. The simulation studies reveal that the controller is well capable of tracking a predetermined supersaturation trajectory in the presence of model imperfections, measurement noise and actuation deficiencies.
Originele taal-2Engels
TitelProceedings of the 2012 American Control Conference (ACC), June 27-29 2012, Montréal, Canada
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
ISBN van geprinte versie978-1-4673-2102-0
StatusGepubliceerd - 2012
Evenement2012 American Control Conference (ACC 2012) - Fairmont Queen Elizabeth, Montréal, Canada
Duur: 27 jun 201229 jun 2012


Congres2012 American Control Conference (ACC 2012)
Verkorte titelACC 2012
AnderAmerican Control Conference 2012 - Montreal Canada
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'Iterative learning control of supersaturation in batch cooling crystallization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit