Samenvatting
Iterative Learning Control (ILC) enables performance improvement by learning from previous tasks. The aim of this paper is to develop an ILC approach for Linear Parameter Varying (LPV) systems to enable improved performance and increased convergence speed compared to the linear time-invariant approach. This is achieved through dedicated analysis and norm-optimal synthesis of LPV learning filters. Application to a position-dependent motion system shows a significant improvement in accuracy and convergence rate, thereby confirming the potential of the proposed approach.
Originele taal-2 | Engels |
---|---|
Titel | 2017 IEEE American Control Conference, 23-26 May 2017, Seattle, Washington |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3518-3523 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-5090-5992-8 |
ISBN van geprinte versie | 978-1-5090-4583-9 |
DOI's | |
Status | Gepubliceerd - 29 jun. 2017 |
Evenement | 2017 American Control Conference (ACC 2017) - Sheraton Seattle Hotel, Seattle, Verenigde Staten van Amerika Duur: 24 mei 2017 → 26 mei 2017 http://acc2017.a2c2.org/ |
Congres
Congres | 2017 American Control Conference (ACC 2017) |
---|---|
Verkorte titel | ACC 2017 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Seattle |
Periode | 24/05/17 → 26/05/17 |
Internet adres |