Iterative learning control and feedforward for LPV systems : applied to a position-dependent motion system

R. de Rozario, T.A.E. Oomen, M. Steinbuch

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

14 Citaten (Scopus)
360 Downloads (Pure)

Samenvatting

Iterative Learning Control (ILC) enables performance improvement by learning from previous tasks. The aim of this paper is to develop an ILC approach for Linear Parameter Varying (LPV) systems to enable improved performance and increased convergence speed compared to the linear time-invariant approach. This is achieved through dedicated analysis and norm-optimal synthesis of LPV learning filters. Application to a position-dependent motion system shows a significant improvement in accuracy and convergence rate, thereby confirming the potential of the proposed approach.

Originele taal-2Engels
Titel2017 IEEE American Control Conference, 23-26 May 2017, Seattle, Washington
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3518-3523
Aantal pagina's6
ISBN van elektronische versie978-1-5090-5992-8
ISBN van geprinte versie978-1-5090-4583-9
DOI's
StatusGepubliceerd - 29 jun. 2017
Evenement2017 American Control Conference (ACC 2017) - Sheraton Seattle Hotel, Seattle, Verenigde Staten van Amerika
Duur: 24 mei 201726 mei 2017
http://acc2017.a2c2.org/

Congres

Congres2017 American Control Conference (ACC 2017)
Verkorte titelACC 2017
Land/RegioVerenigde Staten van Amerika
StadSeattle
Periode24/05/1726/05/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Iterative learning control and feedforward for LPV systems : applied to a position-dependent motion system'. Samen vormen ze een unieke vingerafdruk.

Citeer dit