Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication

S. Ballentine, A. Guillevic, E. Lorenzo-Garcia, C.R. Martindale, M. Maisserer, B. Smith, J. Top

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Schoof's classic algorithm allows point-counting for elliptic curves over finite fields in polynomial time. This algorithm was subsequently improved by Atkin, using factorizations of modular polynomials, and by Elkies, using a theory of explicit isogenies. Moving to Jacobians of genus-2 curves, the current state of the art for point counting is a generalization of Schoof's algorithm. While we are currently missing the tools we need to generalize Elkies' methods to genus 2, recently Martindale and Milio have computed analogues of modular polynomials for genus-2 curves whose Jacobians have real multiplication by maximal orders of small discriminant. In this article, we prove Atkin-style results for genus-2 Jacobians with real multiplication by maximal orders, with a view to using these new modular polynomials to improve the practicality of point-counting algorithms for these curves.
Originele taal-2Engels
TitelAlgebraic geometry for coding theory and cryptography
RedacteurenE.W. Howe, K.E. Lauter, J.L. Walker
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk3
Pagina's63-94
Aantal pagina's32
ISBN van elektronische versie978-3-319-63931-4
ISBN van geprinte versie978-3-319-63930-7
DOI's
StatusGepubliceerd - 2017

Publicatie series

NaamAssociation for Women in Mathematics Series
Volume9
ISSN van geprinte versie2364-5733
ISSN van elektronische versie2364-5741

Vingerafdruk

Duik in de onderzoeksthema's van 'Isogenies for point counting on genus two hyperelliptic curves with maximal real multiplication'. Samen vormen ze een unieke vingerafdruk.

Citeer dit