TY - JOUR
T1 - Iron powder particles as a clean and sustainable carrier
T2 - Investigating their impact on thermal output
AU - Sohrabi, Mohammadmahdi
AU - Ghobadian, Barat
AU - Najafi, Gholamhassan
AU - Choisez, Laurine
AU - Prasidha, Willie
AU - Baigmohammadi, Mohammadreza
AU - de Goey, Philip
N1 - Publisher Copyright:
© 2024 The Institution of Chemical Engineers
PY - 2024/8
Y1 - 2024/8
N2 - The utilization of iron powder as a sustainable energy carrier, conducive to a carbon-free future, has garnered substantial attention due to its commendable attributes such as high energy density, widespread availability, and absence of emissions. To harness its potential optimally, a comprehensive understanding of the combustion behavior of iron powder and the development of corresponding combustion technologies are imperative. This study endeavors to investigate the influence of iron powder particle size, as well as the flow rate of air and iron powder, on the temperature at the exit of the ignition chamber. Experimental trials were conducted utilizing a metal cyclonic combustor (MC2) equipped with a system for feeding iron powder. The findings reveal that an increase in the diameter of iron particles corresponds to an elongation of the path from the ignition chamber to the outlet. Consequently, this elongation induces prolonged ignition delay time and burning duration. Notably, larger particles exhibit enhanced combustion efficiency in comparison to their smaller counterparts. The outcomes demonstrate that particles approximately 50 µm in size achieve an efficiency of 94%, as opposed to 72% for particles below 20 µm. Temperature measurements and spectrometric analysis expose a discernible relationship between particle size and temperature during combustion, elucidating that larger particles yield higher temperatures. Comprehending the intricate correlation between particle size and combustion behavior is crucial for optimizing combustion systems when utilizing iron powder as an energy carrier. By controlling particle size and combustion conditions, the efficiency and efficacy of iron powder combustion processes can be enhanced, thereby contributing to cleaner and more sustainable energy solutions. The implications of this study extend to the enhancement of burner system design and functionality, along with an overall improvement in combustion efficiency. These findings hold significance within the realm of combustion science, presenting opportunities for the development of more sustainable and environmentally friendly energy solutions. Implementing the insights derived from this research empowers researchers to harness the potential of iron powder as an energy carrier, thereby advancing progress toward a greener future through environmentally conscious combustion processes.
AB - The utilization of iron powder as a sustainable energy carrier, conducive to a carbon-free future, has garnered substantial attention due to its commendable attributes such as high energy density, widespread availability, and absence of emissions. To harness its potential optimally, a comprehensive understanding of the combustion behavior of iron powder and the development of corresponding combustion technologies are imperative. This study endeavors to investigate the influence of iron powder particle size, as well as the flow rate of air and iron powder, on the temperature at the exit of the ignition chamber. Experimental trials were conducted utilizing a metal cyclonic combustor (MC2) equipped with a system for feeding iron powder. The findings reveal that an increase in the diameter of iron particles corresponds to an elongation of the path from the ignition chamber to the outlet. Consequently, this elongation induces prolonged ignition delay time and burning duration. Notably, larger particles exhibit enhanced combustion efficiency in comparison to their smaller counterparts. The outcomes demonstrate that particles approximately 50 µm in size achieve an efficiency of 94%, as opposed to 72% for particles below 20 µm. Temperature measurements and spectrometric analysis expose a discernible relationship between particle size and temperature during combustion, elucidating that larger particles yield higher temperatures. Comprehending the intricate correlation between particle size and combustion behavior is crucial for optimizing combustion systems when utilizing iron powder as an energy carrier. By controlling particle size and combustion conditions, the efficiency and efficacy of iron powder combustion processes can be enhanced, thereby contributing to cleaner and more sustainable energy solutions. The implications of this study extend to the enhancement of burner system design and functionality, along with an overall improvement in combustion efficiency. These findings hold significance within the realm of combustion science, presenting opportunities for the development of more sustainable and environmentally friendly energy solutions. Implementing the insights derived from this research empowers researchers to harness the potential of iron powder as an energy carrier, thereby advancing progress toward a greener future through environmentally conscious combustion processes.
KW - Combustion
KW - Flow rate
KW - Iron powder
KW - Particle size
KW - Sustainable energy carrier
UR - http://www.scopus.com/inward/record.url?scp=85195427428&partnerID=8YFLogxK
U2 - 10.1016/j.psep.2024.05.123
DO - 10.1016/j.psep.2024.05.123
M3 - Article
AN - SCOPUS:85195427428
SN - 0957-5820
VL - 188
SP - 957
EP - 969
JO - Process Safety and Environmental Protection
JF - Process Safety and Environmental Protection
ER -