Investigating the Impact of Image Quality on Endoscopic AI Model Performance

Tim J.M. Jaspers, Tim Boers, Koen Kusters, Martijn R. Jong, Jelmer B. Jukema, Albert J. (Jeroen) de Groof, Jacques J.G.H.M. Bergman, Peter H.N. de With, Fons van der Sommen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Virtually all endoscopic AI models are developed with clean, high-quality imagery from expert centers, however, the clinical data quality is much more heterogeneous. Endoscopic image quality can degrade by e.g. poor lighting, motion blur, and image compression. This disparity between training, validation data, and real-world clinical practice can have a substantial impact on the performance of deep neural networks (DNNs), potentially resulting in clinically unreliable models. To address this issue and develop more reliable models for automated cancer detection, this study focuses on identifying the limitations of current DNNs. Specifically, we evaluate the performance of these models under clinically relevant and realistic image corruptions, as well as on a manually selected dataset that includes images with lower subjective quality. Our findings highlight the importance of understanding the impact of a decrease in image quality and the need to include robustness evaluation for DNNs used in endoscopy.
Originele taal-2Engels
TitelApplications of Medical Artificial Intelligence
SubtitelSecond International Workshop, AMAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
RedacteurenShandong Wu, Behrouz Shabestari, Lei Xing
UitgeverijSpringer Nature
Pagina's32–41
Aantal pagina's10
ISBN van elektronische versie978-3-031-47076-9
ISBN van geprinte versie978-3-031-47075-2
DOI's
StatusGepubliceerd - 26 okt. 2023
Evenement26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023 - Vancouver Convention Centre Canada, Vancouver, Canada
Duur: 8 okt. 202312 okt. 2023
Congresnummer: 26
https://conferences.miccai.org/2023/en/
https://switchmiccai.github.io/switch/

Publicatie series

NaamLecture Notes in Computer Science
Volume14313 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023
Verkorte titelMICCAI
Land/RegioCanada
StadVancouver
Periode8/10/2312/10/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Investigating the Impact of Image Quality on Endoscopic AI Model Performance'. Samen vormen ze een unieke vingerafdruk.

Citeer dit