Samenvatting
This thesis focusses on the analysis and construction of control policies in multiitem
production systems. In such systems, multiple items can be made to stock, but they have to share the finite capacity of a single machine. This machine can only produce one unit at a time and if it is setup for one item, a switchover or setup time is needed to start the production of another item. Customers arrive to the system according to (compound) Poisson processes and if they see no stock upon arrival, they are either considered as a lost sale or backlogged. In this thesis, we look at production systems with backlog and production systems with lost sales. In production systems with lost sales, all arriving customers are considered lost if no stock is available and penalty costs are paid per lost customer. In production systems with backlog, arriving customers form a queue if they see no stock and backlogging costs are paid for every backlogged customer per time unit.
These production systems find many applications in industry, for instance glass and paper production or bulk production of beers, see Anupindi and Tayur [2]. The objective for the production manager is to minimize the sum of the holding and penalty or backlogging costs. At each decision moment, the manager has to decide whether to switch to another product type, to produce another unit of the type that is setup or to idle the machine. In order to minimize the total costs, a balance must be found between a fast switching scheme that is able to react to sudden changes in demand and a production plan with a little loss of capacity. Unfortunately, a fast switching scheme results in a loss of capacity, because switching from one product type to another requires a switchover or setup time.
In the optimal production strategy, decisions depend on the complete state of the system. Because the processes at the different product flows depend on these decisions, the processes also depend on the complete state of the system. This means that the processes at the different product flows are not independent, which makes the analysis and construction of the optimal production strategy very complex. In fact, the complexity of the determination of this policy grows exponentially in the number of product types and if this number is too large, the optimal policy becomes intractable. Production strategies in which decisions depend on the complete system are defined as global lot sizing policies and are often difficult to construct or analyse, because of the dependence between the different product flows. However, in this thesis the construction of a global lot sizing policy is presented which also works for production systems with a large number of product types. The key factor that makes the construction possible is the fact that it is based on a fixed cycle policy. In Chapter 2, the fixed cycle policy is analysed for production systems
with lost sales and in Chapter 6, the fixed cycle policy is analysed for production systems with backlog. The fixed cycle policy can be analysed per product flow and this decomposition property allows for the determination of the so called relative values. If it is assumed that one continues with a fixed cycle control, the relative values per product type represent the relative expected future costs for each decision. Based on these relative values, an improvement step (see Norman [65]) is performed which results in a ‘one step improvement’ policy. This policy is constructed and analysed in Chapters 2 and 7 for production systems with lost sales and production systems with backlog, respectively.
This global lot sizing policy turns out to perform well compared to other, heuristic
production strategies, especially in systems with a high load and demand processes with a high variability. A similar approach as for the production system with a single machine is performed in a system with two machines and lost sales in Chapter 3. Results show that in some cases the constructed strategy works well, although in some systems two separate one step improvement policies perform better. Examples of more heuristic production strategies are gated and exhaustive basestock policies. In these ’local lot sizing‘ policies, decisions depend only on the stock level of the product type that is setup. But even in these policies, the processes at the different product flows are dependent. This makes the analysis difficult, but for production systems with backlog a translation can be made to a queueing system by looking at the number of products short to the basestock level. So the machine becomes a server and each product flow becomes a queue. In these queueing systems, also known as polling systems, gated and exhaustive basestock policies become gated and exhaustive visit disciplines. For polling systems, an exact analysis of the queue length or waiting time distribution is often possible via generating functions or LaplaceStieltjes transforms. In Chapter 5, the determination of the sojourn time distribution of customers in a polling system with a (globally) gated visit discipline is presented, which comes down to the determination of the lead time distribution in the corresponding production system.
Originele taal2  Engels 

Kwalificatie  Doctor in de Filosofie 
Toekennende instantie 

Begeleider(s)/adviseur 

Datum van toekenning  12 okt 2010 
Plaats van publicatie  Eindhoven 
Uitgever  
Gedrukte ISBN's  9789038623375 
DOI's  
Status  Gepubliceerd  2010 
Vingerafdruk Duik in de onderzoeksthema's van 'Inventory control in multiitem production systems'. Samen vormen ze een unieke vingerafdruk.
Citeer dit
Bruin, J. (2010). Inventory control in multiitem production systems. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR689802