Introducing Scene Understanding to Person Re-Identification using a Spatio-Temporal Multi-Camera Model

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper, we investigate person re-identification (re-ID) in a multi-camera network for surveillance applications. To this end, we create a Spatio-Temporal Multi-Camera model (ST-MC model), which exploits statistical data on a person’s entry/exit points in the multi-camera network, to predict in which camera view a person will re-appear. The created ST-MC model is used as a novel extension to the Multiple Granularity Network (MGN) [1], which is the current state of the art in person re-ID. Compared to existing approaches that are solely based on Convolutional Neural Networks (CNNs), our approach helps to improve the re-ID performance by considering not only appearance-based features of a person from a CNN, but also contextual information. The latter serves as scene understanding information complimentary to person re-ID. Experimental results show that for the DukeMTMC-reID dataset [2][3], introduction of our ST-MC model substantially increases the mean Average Precision (mAP) and Rank-1 score from 77.2% to 84.1%, and from 88.6% to 96.2%, respectively.

Originele taal-2Engels
TitelProceedings IS&T International Symposium on Electronic Imaging
SubtitelImage Processing: Algorithms and Systems XVIII, 2020
Plaats van productieSpringfield
UitgeverijSociety for Imaging Science and Technology (IS&T)
Aantal pagina's13
DOI's
StatusGepubliceerd - 26 jan. 2020
Evenement18th Image Processing: Algorithms and Systems Conference, IPAS 2020 - Burlingame, Verenigde Staten van Amerika
Duur: 26 jan. 202030 jan. 2020

Publicatie series

NaamElectronic Imaging
Volume32

Congres

Congres18th Image Processing: Algorithms and Systems Conference, IPAS 2020
Land/RegioVerenigde Staten van Amerika
StadBurlingame
Periode26/01/2030/01/20

Vingerafdruk

Duik in de onderzoeksthema's van 'Introducing Scene Understanding to Person Re-Identification using a Spatio-Temporal Multi-Camera Model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit