Introducing scene understanding to person re-identification using a spatio-temporal multi-camera model

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

61 Downloads (Pure)

Samenvatting

In this paper, we investigate person re-identification (re-ID) in a multi-camera network for surveillance applications. To this end, we create a Spatio-Temporal Multi-Camera model (ST-MC model), which exploits statistical data on a person’s entry/exit points in the multi-camera network, to predict in which camera view a person will re-appear. The created ST-MC model is used as a novel extension to the Multiple Granularity Network (MGN) [1], which is the current state of the art in person re-ID. Compared to existing approaches that are solely based on Convolutional Neural Networks (CNNs), our approach helps to improve the re-ID performance by considering not only appearance-based features of a person from a CNN, but also contextual information. The latter serves as scene understanding information complimentary to person re-ID. Experimental results show that for the DukeMTMC-reID dataset [2][3], introduction of our ST-MC model substantially increases the mean Average Precision (mAP) and Rank-1 score from 77.2% to 84.1%, and from 88.6% to 96.2%, respectively.
Originele taal-2Engels
StatusGepubliceerd - 2020
EvenementIS&T International Symposium on Electronic Imaging 2020, Image Processing: Algorithms and Systems XVIII - Burlingame, Verenigde Staten van Amerika
Duur: 26 jan 202030 jan 2020
Congresnummer: XVIII

Congres

CongresIS&T International Symposium on Electronic Imaging 2020, Image Processing: Algorithms and Systems XVIII
Verkorte titelIPAS2020
LandVerenigde Staten van Amerika
StadBurlingame
Periode26/01/2030/01/20

Vingerafdruk Duik in de onderzoeksthema's van 'Introducing scene understanding to person re-identification using a spatio-temporal multi-camera model'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Liu, X., Groot, H. G. J., Bondarau, E., & de With, P. H. N. (2020). Introducing scene understanding to person re-identification using a spatio-temporal multi-camera model. Paper gepresenteerd op IS&T International Symposium on Electronic Imaging 2020, Image Processing: Algorithms and Systems XVIII, Burlingame, Verenigde Staten van Amerika.