Introducing positive discrimination in predictive models

T.G.K. Calders, S.E. Verwer

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

    5 Citaten (Scopus)
    2 Downloads (Pure)

    Samenvatting

    In this chapter we give three solutions for the discrimination-aware classification problem that are based upon Bayesian classifiers. These classifiers model the complete probability distribution by making strong independence assumptions. First we discuss the necessity of having discrimination-free classification for probabilistic models. Then we will show three ways to adapt a Naive Bayes classifier in order to make it discrimination-free. The first technique is based upon setting different thresholds for the different communities. The second technique will learn two different models for both communities, while the third model describes how we can incorporate our belief of how discrimination was added to the decisions in the training data as a latent variable. By explicitly modeling the discrimination, we can reverse engineer decisions. Since all three models can be seen as ways to introduce positive discrimination, we end the chapter with a reflection on positive discrimination.
    Originele taal-2Engels
    TitelDiscrimination and Privacy in the Information Society: Effects of Data Mining and Profiling Large Databases
    RedacteurenB.H.M. Custers, T.G.K. Calders, B.W. Schermer, T.Z. Zarsky
    Plaats van productieBerlin
    UitgeverijSpringer
    Hoofdstuk14
    Pagina's255-270
    ISBN van geprinte versie978-3-642-30486-6
    DOI's
    StatusGepubliceerd - 2013

    Publicatie series

    NaamStudies in Applied Philosophy, Epistemology and Rational Ethics
    Volume3
    ISSN van geprinte versie2192-6255

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Introducing positive discrimination in predictive models'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit