Interest-driven discovery of local process models

Niek Tax, Benjamin Dalmas, Natalia Sidorova, Wil M.P. van der Aalst, Sylvie Norre

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)

Samenvatting

Local Process Models (LPM) describe structured fragments of process behavior occurring in the context of less structured business processes. Traditional LPM discovery aims to generate a collection of process models that describe highly frequent behavior, but these models do not always provide useful answers to questions posed by process analysts aiming at business process improvement. We propose a framework for goal-driven LPM discovery, based on utility functions and constraints. We describe four scopes on which these utility functions and constraints can be defined, and show that utility functions and constraints on different scopes can be combined to form composite utility functions/constraints. Finally, we demonstrate the applicability of our approach by presenting several actionable business insights discovered with LPM discovery on three real-life data sets.

Originele taal-2Engels
Pagina's (van-tot)105-117
Aantal pagina's13
TijdschriftInformation Systems
Volume77
DOI's
StatusGepubliceerd - sep. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Interest-driven discovery of local process models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit