Interactive learning in transportation networks with uncertainty, bounded rationality, and strategic choice behavior: quantal response model

Q. Han, H.J.P. Timmermans

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)
5 Downloads (Pure)

Samenvatting

Existing learning and adaptive behavior models are typically derived from reinforcement learning from actual experiences in dynamic nonstationary environments. When the dynamics involve uncertainty with respect to the choice behavior of other travelers, travelers might make particular choice options by taking into account their expectations about the behavior of other travelers. Consequently, they will learn not only from their own experiences but also from the extent to which their conjectures about the behavior of other travelers are consistent with actual choices. A general model of interactive learning behavior that evolves toward equilibrium in such strategic situations is described. The properties of the model are examined by using numerical computer simulations. The results of the simulations support the face validity of the formulated model.
Originele taal-2Engels
Pagina's (van-tot)27-34
Aantal pagina's8
TijdschriftTransportation Research Record
Volume1964
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2006

Vingerafdruk

Duik in de onderzoeksthema's van 'Interactive learning in transportation networks with uncertainty, bounded rationality, and strategic choice behavior: quantal response model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit