Integrating data-informativity conditions in predictor models for single module identification in dynamic networks

Paul M.J. Van den Hof (Corresponding author), Karthik R. Ramaswamy, Stefanie J.M. Fonken

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

1 Citaat (Scopus)
19 Downloads (Pure)

Samenvatting

For consistent identification of a target module in a dynamic network with the local direct method, basically two prime conditions need to be satisfied: (a) a set of structural conditions on the choice of the predictor model, i.e. a set of input and output node variables, and (b) conditions on data-informativity. While for conditions (a) constructive algorithms for node selection have been presented that appropriately guarantee that the identified object can indeed reveal the target module, the requirements for satisfying (b) have not yet been integrated fully. In this paper, we will present simplified path-based results for generic data-informativity, and show how they can be integrated in constructive algorithms for predictor model selection that provide consistent target module estimates. It is shown that data-informativity not only requires a sufficient number of external excitation signals to be present in the network, but also puts restrictions on the structure of the predictor model, i.e. the selection of input and output node variables. Some examples are presented to illustrate the new results.

Originele taal-2Engels
Pagina's (van-tot)2377-2382
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - nov. 2023
Evenement22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan
Duur: 9 jul. 202314 jul. 2023
Congresnummer: 22
https://www.ifac2023.org/

Bibliografische nota

Publisher Copyright:
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Vingerafdruk

Duik in de onderzoeksthema's van 'Integrating data-informativity conditions in predictor models for single module identification in dynamic networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit