Integral closures and weight functions over finite fields

Douglas A. Leonard, G.R. Pellikaan

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Curves and surfaces of type I are generalized to integral towers of rank r. Weight functions with values in N/sup r/ and the corresponding weighted total-degree monomial orderings lift naturally from one domain R/sub j-1/in the tower to the next, R/sub j/, the integral closure of R/sub j-1/[x/sub j/]/<0(x/sub j/)>. The q-th power algorithm is reworked in this more general setting to produce this integral closure over finite fields, though the application is primarily that of calculating the normalizations of curves related to one-point AG codes arising from towers of function fields. Every attempt has been made to couch all the theory in terms of multivariate polynomial rings and ideals instead of the terminology from algebraic geometry or function field theory, and to avoid the use of any type of series expansion.
Originele taal-2Engels
TitelProceedings 2002 IEEE International Symposium on Information Theory (ISIT'02)
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's59-59
Aantal pagina's1
ISBN van geprinte versie0-7803-7501-7
DOI's
StatusGepubliceerd - 2002
Evenement2002 IEEE International Symposium on Information Theory, ISIT 2002 - Lausanne, Zwitserland
Duur: 30 jun. 20025 jul. 2002

Congres

Congres2002 IEEE International Symposium on Information Theory, ISIT 2002
Verkorte titelISIT
Land/RegioZwitserland
StadLausanne
Periode30/06/025/07/02

Vingerafdruk

Duik in de onderzoeksthema's van 'Integral closures and weight functions over finite fields'. Samen vormen ze een unieke vingerafdruk.

Citeer dit