Influence of decoder size for binary segmentation tasks in medical imaging

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Symmetric design of encoder-decoder networks is common in deep learning. For almost all segmentation problems, the output segmentation is vastly less complex compared to the input image. However, the effect of the size of the decoder on segmentation performance has not been investigated in literature. This work investigates the effect of reducing decoder size on binary segmentation performance in a medical imaging application. To this end, we propose a methodology to reduce the size of the decoder in encoder-decoder networks, where residual skip connections are employed in combination with a 1×1 convolution instead of concatenations (as employed by U-Net) to achieve models with asymmetric design. The results on the ISIC2017 data set show that the amount of trainable parameters in the decoder can be reduced by up to a factor 100 compared to standard U-Net, while retaining segmentation performance. Additionally, the reduced amount of trainable decoder parameters in the proposed models leads to inference times up to 3 times faster compared to standard U-Net.

Originele taal-2Engels
TitelMedical Imaging 2020
SubtitelImage Processing
RedacteurenIvana Isgum, Bennett A. Landman
UitgeverijSPIE
ISBN van elektronische versie9781510633933
DOI's
StatusGepubliceerd - 2020
EvenementSPIE Medical Imaging 2020 - Houston, Verenigde Staten van Amerika
Duur: 15 feb. 202020 feb. 2020

Publicatie series

NaamProceedings of SPIE
Volume11313
ISSN van geprinte versie1605-7422

Congres

CongresSPIE Medical Imaging 2020
Land/RegioVerenigde Staten van Amerika
StadHouston
Periode15/02/2020/02/20

Bibliografische nota

Publisher Copyright:
© 2020 SPIE. All rights reserved.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Influence of decoder size for binary segmentation tasks in medical imaging'. Samen vormen ze een unieke vingerafdruk.

Citeer dit