Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Complete event data is essential to perform rich analysis. However, real-life systems might fail in recording the (correct) case identifiers the system has operated on, resulting in incomplete event data. We aim to infer missing case identifiers of events by considering the physical constraints of the process which previous work has failed to do. We extended Event Knowledge Graphs (EKGs) with concepts for context and rule-based inference. We use the extended EKGs to model event data in its physical context and define five inference rules to infer identifiers of physical objects in a process. We evaluate the effectiveness of the rules on data from the IC manufacturing industry using conformance checking. Initially, none of the traces were complete. Our method inferred a case identifier for 95% of the events resulting in 88% complete traces.
Originele taal-2Engels
TitelBusiness Process Management
Subtitel21st International Conference, BPM 2023, Utrecht, The Netherlands, September 11–15, 2023, Proceedings
RedacteurenChiara Di Francescomarino, Andrea Burattin, Christian Janiesch, Shazia Sadiq
Plaats van productieCham
UitgeverijSpringer
Pagina's180-197
Aantal pagina's18
ISBN van elektronische versie978-3-031-41620-0
ISBN van geprinte versie978-3-031-41619-4
DOI's
StatusGepubliceerd - 2023
Evenement21st International Conference on Business Process Management, BPM 2023 - Utrecht, Nederland
Duur: 11 sep. 202315 sep. 2023

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14159
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres21st International Conference on Business Process Management, BPM 2023
Verkorte titelBPM 2023
Land/RegioNederland
StadUtrecht
Periode11/09/2315/09/23

Financiering

The research underlying this paper was partially supported by NXP Semiconductors and by AutoTwin EU GA n. 101092021.

FinanciersFinanciernummer
NXP Semiconductors101092021

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Inferring Missing Entity Identifiers from Context Using Event Knowledge Graphs'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit