Improving the Performance of Automated Optical Inspection (AOI) Using Machine Learning Classifiers

Vahideh Reshadat, Rick A.J.W. Kapteijns

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

10 Citaten (Scopus)
561 Downloads (Pure)

Samenvatting

Automated Optical Inspection (AOI) machines inspect the Printed Circuit Board (PCB) manufacturing visually using a camera autonomously scans the device under test for both catastrophic failure (e.g. missing component) and quality defects (e.g. fillet size, shape or component skew). High false call rate is a fundamental concern of AOI machines that occurs when a component is considered as a ‘fail’ incorrectly that then have to be verified manually. In order to alleviate this problem, we train and compare different machine learning models (Decision Tree, Random Forest, K-Nearest Neighbors and Artificial Neural Network) and thresholds using logged fail data and extracting the efficient categorical and numerical features. The results show that the trained classifiers are able to identify the false calls well and increase the accuracy without increasing the error slip much. The K-Nearest Neighbor model, with a low threshold achieves the best result.
Originele taal-2Engels
TitelProceedings of 2021 International Conference on Data and Software Engineering
SubtitelData and Software Engineering for Supporting Sustainable Development Goals, ICoDSE 2021
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van elektronische versie978-1-6654-9453-3
DOI's
StatusGepubliceerd - 22 dec. 2021
EvenementInternational Conference on Data and Software Engineering, ICoDSE 2021 - , Indonesië
Duur: 3 nov. 20214 nov. 2021
https://icodse.org/

Congres

CongresInternational Conference on Data and Software Engineering, ICoDSE 2021
Verkorte titelICoDSE 2021
Land/RegioIndonesië
Periode3/11/214/11/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Improving the Performance of Automated Optical Inspection (AOI) Using Machine Learning Classifiers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit