Improving Frequency Estimation under Local Differential Privacy

Milan Lopuhaä-Zwakenberg, Zitao Li, Boris Skoric, Ninghui Li

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Local Differential Privacy protocols are stochastic protocols used in data aggregation when individual users do not trust the data aggregator with their private data. In such protocols there is a fundamental tradeoff between user privacy and aggregator utility. In the setting of frequency estimation, established bounds on this tradeoff are either nonquantitative, or far from what is known to be attainable. In this paper, we use information-theoretical methods to significantly improve established bounds. We also show that the new bounds are attainable for binary inputs. Furthermore, our methods lead to improved frequency estimators, which we experimentally show to outperform state-of-the-art methods.

Originele taal-2Engels
TitelWPES 2020 - Proceedings of the 19th Workshop on Privacy in the Electronic Society
UitgeverijAssociation for Computing Machinery, Inc.
Pagina's123-135
Aantal pagina's13
ISBN van elektronische versie9781450380867
DOI's
StatusGepubliceerd - 9 nov. 2020
Evenement19th ACM Workshop on Privacy in the Electronic Society, WPES 2020, held in conjunction with the 27th ACM Conference on Computer and Communication Security, CCS 2020 - Virtual, Online, Verenigde Staten van Amerika
Duur: 9 nov. 20209 nov. 2020

Congres

Congres19th ACM Workshop on Privacy in the Electronic Society, WPES 2020, held in conjunction with the 27th ACM Conference on Computer and Communication Security, CCS 2020
Land/RegioVerenigde Staten van Amerika
StadVirtual, Online
Periode9/11/209/11/20

Financiering

This project is supported by NSF grant 1640374, NWO grant 628.001.026, and NSF grant 1931443. We thank the anonymous reviewers for their helpful suggestions.

Vingerafdruk

Duik in de onderzoeksthema's van 'Improving Frequency Estimation under Local Differential Privacy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit