Samenvatting
Presence detection is used in occupancy control to dynamically adjust energy-related appliances in smart building applications. Yet, practical applications typically suffer from high sensor unreliability. We propose a computationally efficient approach, based on Hidden Markov Models, to fuse sensor observations from multiple sensors to better estimate user state (presence/absence). Our model considers a realistic scenario, where sensor communication may be limited or unreliable, thus some sensor observations data may be missing for some intervals. Compared to state of art classifiers (Logistic Regression, Naïve Bayes, SVM), our approach achieves improved results while maintaining low computational and memory requirements or even relaxing these. Judging from our experiments, the algorithm appears to work well also in real-world test set-up where user presence and sensors error may not exactly follow our idealized model assumptions.
Originele taal-2 | Engels |
---|---|
Titel | 2017 IEEE International Conference on Computer and Information Technology (CIT) |
Pagina's | 75-80 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-5386-0958-3 |
DOI's | |
Status | Gepubliceerd - 14 sep. 2017 |
Evenement | 17th IEEE International Conference on Computer and Information Technology (IEEE CIT 2017) - Crowne Plaza Helsinki, Helsinki, Finland Duur: 21 aug. 2017 → 23 aug. 2017 Congresnummer: 17 http://research.comnet.aalto.fi/CIT2017/ |
Congres
Congres | 17th IEEE International Conference on Computer and Information Technology (IEEE CIT 2017) |
---|---|
Verkorte titel | IEEE CIT 2017 |
Land/Regio | Finland |
Stad | Helsinki |
Periode | 21/08/17 → 23/08/17 |
Internet adres |