Improved Parameter Estimation of the Doyle-Fuller-Newman Model by Incorporating Temperature Dependence

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

91 Downloads (Pure)

Samenvatting

Identifiability remains a key issue in estimating the model parameters of the Doyle-Fuller-Newman (DFN) model, which implements physics-based modeling of lithium-ion cells. This paper proposes the inclusion of physics-based temperature relations within the DFN model and the parameter estimation technique, in which model parameters are estimated over a wide temperature range. We evaluate the effect of including physics-based relations on the identifiability of the model, as well as its voltage prediction accuracy. The implementation of physics-based relations results in parameters that are physically meaningful, and comparable model accuracies to the original parameter estimation technique, in which the model parameters are identified at individual temperatures and physics-based temperature relations are not included. We further evaluate the robustness of the parameter estimation technique by perturbing initial conditions and compare its affect on the presened and the original parameter estimation technique. We find the presented parameter estimation technique to be more robust and reliable. Finally, we compare the DFN model to an equivalent-circuit model and find the DFN model to be comparable in accuracy whilst having a better representation of the internal states of the cell.
Originele taal-2Engels
Pagina's (van-tot)6136-6141
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jul. 2023
Evenement22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan
Duur: 9 jul. 202314 jul. 2023
Congresnummer: 22
https://www.ifac2023.org/

Financiering

FinanciersFinanciernummer
REACT-EU
European Regional Development Fund

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Improved Parameter Estimation of the Doyle-Fuller-Newman Model by Incorporating Temperature Dependence'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit