Samenvatting
Map construction is the problem of reconstructing a travel network based on trajectory data of entities travelling on the network. While many map construction algorithms reconstruct the global structure of a network well, local features such as location of crossings and turns are generally harder to reconstruct correctly, in particular for noisy and irregularly sampled data. We demonstrate how subtrajectory clustering can be used to construct maps that capture both the global structure and local features well.
Originele taal-2 | Engels |
---|---|
Titel | LocalRec 2020 - Proceedings of the 4th ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising |
Redacteuren | Panagiotis Bouros, Tamraparni Dasu, Yaron Kanza, Matthias Renz, Dimitris Sacharidis |
Uitgeverij | Association for Computing Machinery, Inc. |
ISBN van elektronische versie | 9781450381604 |
DOI's | |
Status | Gepubliceerd - 3 nov. 2020 |
Evenement | 4th ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising, LocalRec 2020, 28th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL 2020 - Seattle, Virtual, Verenigde Staten van Amerika Duur: 3 nov. 2020 → … |
Publicatie series
Naam | ACM International Conference Proceeding Series |
---|
Congres
Congres | 4th ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising, LocalRec 2020, 28th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL 2020 |
---|---|
Land/Regio | Verenigde Staten van Amerika |
Stad | Seattle, Virtual |
Periode | 3/11/20 → … |
Bibliografische nota
Publisher Copyright:© 2020 ACM.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
Financiering
∗Partially supported by National Science Foundation grant CCF 1637576. †Partially supported by projects PID2019-104129GB-I00/AEI/10.13039/501100011033 and Gen. Cat. 2017-SGR-1640.