Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield

T.S. Doorn, E.J.W. Maten, ter, J.A. Croon, A. Di Bucchianico, O. Wittich

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

57 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Variability is an important aspect of SRAM cell design. Failure probabilities of Pfail=10-10 have to be estimated through statistical simulations. Accurate statistical techniques such as Importance Sampling Monte Carlo simulations are essential to accurately and efficiently estimate such low failure probabilities. This paper shows that a simple form of Importance Sampling is sufficient for simulating Pfail=10-10 for the SRAM parameters Static Noise Margin, Write Margin and Read Current. For the SNM, a new simple technique is proposed that allows extrapolating the SNM distribution based on a limited number of trials. For SRAM total leakage currents, it suffices to take the averages into account for designing SRAM cells and modules. A guideline is proposed to ensure bitline leakage currents do not compromise SRAM functionality.
Originele taal-2Engels
TitelProceedings 34th European Solid State Circuits Conference (ESSCIRC2008, Edinburgh, UK, September 15-19, 2008)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's230-233
ISBN van geprinte versie978-1-4244-2361-3
DOI's
StatusGepubliceerd - 2008

Vingerafdruk Duik in de onderzoeksthema's van 'Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Doorn, T. S., Maten, ter, E. J. W., Croon, J. A., Di Bucchianico, A., & Wittich, O. (2008). Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In Proceedings 34th European Solid State Circuits Conference (ESSCIRC2008, Edinburgh, UK, September 15-19, 2008) (blz. 230-233). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ESSCIRC.2008.4681834