TY - JOUR
T1 - Impact of turbulence models and roughness height in 3D steady RANS simulations of wind flow in an urban environment
AU - Ricci, A.
AU - Kalkman, I.
AU - Blocken, B.
AU - Burlando, M.
AU - Repetto, M. P.
PY - 2020/3/15
Y1 - 2020/3/15
N2 - The accuracy and reliability of 3D steady RANS CFD simulations of wind flow in urban environments can be affected by numerical settings including the turbulence model and the imposed roughness heights. In that regard, various k-ε and k-ω turbulence models and roughness height (ks) values are commonly used when predicting wind flow in urban environments. However, it is insufficiently known to which extent the CFD results may be influenced by these settings when simulating wind flows in complex urban environments with large changes in surface roughness. This is the scope of the present paper, for which wind-tunnel (WT) measurements and CFD simulations were performed on a reduced-scale model (1:300) of a district of Livorno (Italy). Mean wind speed (U), turbulent kinetic energy (k) and turbulence dissipation rate (ε) profiles from WT measurements and CFD simulations were compared at 25 positions and deviations between experimental and numerical results were quantified by three metrics: fractional bias, correlation coefficient and fraction of data within a factor of 1.3. The turbulence model selection had a larger impact compared to the surface roughness selection on U, k and ε values. The best and worst performing turbulence models (e.g. for α = 240° at 0.02 m above the bottom) showed a deviation in terms of correlation (0.89 and 0.61, respectively) of about 0.28. Conversely, the best and worst performing roughness set, (e.g. for α = 240° at 0.02 m above the bottom), showed a deviation in terms of correlation (0.77 and 0.78, respectively) of only 0.01.
AB - The accuracy and reliability of 3D steady RANS CFD simulations of wind flow in urban environments can be affected by numerical settings including the turbulence model and the imposed roughness heights. In that regard, various k-ε and k-ω turbulence models and roughness height (ks) values are commonly used when predicting wind flow in urban environments. However, it is insufficiently known to which extent the CFD results may be influenced by these settings when simulating wind flows in complex urban environments with large changes in surface roughness. This is the scope of the present paper, for which wind-tunnel (WT) measurements and CFD simulations were performed on a reduced-scale model (1:300) of a district of Livorno (Italy). Mean wind speed (U), turbulent kinetic energy (k) and turbulence dissipation rate (ε) profiles from WT measurements and CFD simulations were compared at 25 positions and deviations between experimental and numerical results were quantified by three metrics: fractional bias, correlation coefficient and fraction of data within a factor of 1.3. The turbulence model selection had a larger impact compared to the surface roughness selection on U, k and ε values. The best and worst performing turbulence models (e.g. for α = 240° at 0.02 m above the bottom) showed a deviation in terms of correlation (0.89 and 0.61, respectively) of about 0.28. Conversely, the best and worst performing roughness set, (e.g. for α = 240° at 0.02 m above the bottom), showed a deviation in terms of correlation (0.77 and 0.78, respectively) of only 0.01.
KW - 3D steady RANS
KW - Roughness height
KW - Turbulence models
KW - Urban canopy layer
KW - Urban wind flow
UR - http://www.scopus.com/inward/record.url?scp=85077516033&partnerID=8YFLogxK
U2 - 10.1016/j.buildenv.2019.106617
DO - 10.1016/j.buildenv.2019.106617
M3 - Article
AN - SCOPUS:85077516033
SN - 0360-1323
VL - 171
JO - Building and Environment
JF - Building and Environment
M1 - 106617
ER -