Image Features for Automated Colorectal Polyp Classification Based on Clinical Prediction Models

M.C.A. van Grinsven, Thom Scheeve, Ramon-Michel Schreuder, Fons van der Sommen, Erik J. Schoon, Peter de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Accurate endoscopic differentiation on resection of colorectal polyps (CRPs) (resect-discard or diagnose-leave strategies) increases cost-efficiency and reduces patient risk. We aim to develop a classification algorithm for automated differentiation of CRPs, by following the validated clinical Work-group serrAted polypS and Polyposis (WASP) classification scheme. Quantitative image features are investigated for each individual WASP criterion and classification is performed by conventional SVM. The technical WASP model results in areas under the curve of 0.87-0.95 and accuracies of 78-89%. Predicting polyp histology using model-based learning out-performs medical experts (accuracy, 87-93% vs 86 87%). Direct classification predicts more premalignant polyps-as being benign, compared to the automated WASP scheme. These errors do not occur when including ROC characteristics to the WASP model. The proposed WASP model is the first automated system, competing with medical expert classification.

Originele taal-2Engels
Titel2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's210-214
Aantal pagina's5
ISBN van elektronische versie978-1-5386-6249-6
ISBN van geprinte versie978-1-5386-6250-2
DOI's
StatusGepubliceerd - 26 aug. 2019
Evenement26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan
Duur: 22 sep. 201925 sep. 2019

Congres

Congres26th IEEE International Conference on Image Processing, ICIP 2019
Land/RegioTaiwan
StadTaipei
Periode22/09/1925/09/19

Bibliografische nota

Publisher Copyright:
© 2019 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'Image Features for Automated Colorectal Polyp Classification Based on Clinical Prediction Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit