Activiteiten per jaar
Samenvatting
Accurate endoscopic differentiation on resection of colorectal polyps (CRPs) (resect-discard or diagnose-leave strategies) increases cost-efficiency and reduces patient risk. We aim to develop a classification algorithm for automated differentiation of CRPs, by following the validated clinical Work-group serrAted polypS and Polyposis (WASP) classification scheme. Quantitative image features are investigated for each individual WASP criterion and classification is performed by conventional SVM. The technical WASP model results in areas under the curve of 0.87-0.95 and accuracies of 78-89%. Predicting polyp histology using model-based learning out-performs medical experts (accuracy, 87-93% vs 86 87%). Direct classification predicts more premalignant polyps-as being benign, compared to the automated WASP scheme. These errors do not occur when including ROC characteristics to the WASP model. The proposed WASP model is the first automated system, competing with medical expert classification.
Originele taal-2 | Engels |
---|---|
Titel | 2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 210-214 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-5386-6249-6 |
ISBN van geprinte versie | 978-1-5386-6250-2 |
DOI's | |
Status | Gepubliceerd - 26 aug. 2019 |
Evenement | 26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan Duur: 22 sep. 2019 → 25 sep. 2019 |
Congres
Congres | 26th IEEE International Conference on Image Processing, ICIP 2019 |
---|---|
Land/Regio | Taiwan |
Stad | Taipei |
Periode | 22/09/19 → 25/09/19 |
Bibliografische nota
Publisher Copyright:© 2019 IEEE.
Vingerafdruk
Duik in de onderzoeksthema's van 'Image Features for Automated Colorectal Polyp Classification Based on Clinical Prediction Models'. Samen vormen ze een unieke vingerafdruk.Activiteiten
- 1 Aangemelde presentatie
-
Image features for automated colorectal polyp classification based on clinical prediction models
Scheeve, T. (Spreker)
23 sep. 2019Activiteit: Types gesprekken of presentaties › Aangemelde presentatie › Wetenschappelijk
Onderzoekersoutput
- 3 Citaties
- 1 Conferentiebijdrage
-
Computer-aided classification of colorectal polyps using blue-light and linked-color imaging
Scheeve, T., Schreuder, R.-M., van der Sommen, F., IJspeert, J. E. G., Dekker, E., Schoon, E. J. & de With, P. H. N., 13 mrt. 2019, Medical Imaging 2019: Computer-Aided Diagnosis: Computer-Aided Diagnosis. Mori, K. & Hahn, H. K. (uitgave). Bellingham: SPIE, 8 blz. 1095012. (Proceedings of SPIE; vol. 10950).Onderzoeksoutput: Hoofdstuk in Boek/Rapport/Congresprocedure › Conferentiebijdrage › Academic › peer review
2 Citaten (Scopus)