Identification of Linear State-Space Models Subject to Truncated Gaussian Disturbances

Onderzoeksoutput: Bijdrage aan congresPoster

53 Downloads (Pure)

Samenvatting

Within Bayesian state estimation, an important effort has been put to incorporate constraints into state estimation for process optimization, state monitoring, fault detection and control. Nonetheless, in the domain of state-space system identification, the prevalent practice entails constructing models under Gaussian noise assumptions, which suffer from inaccuracies when the noise follows bounded distributions. This poster introduces a novel data-driven method rooted in maximum likelihood principles, aimed at identifying linear state-space models subject to truncated Gaussian noise. This approach enables the concurrent estimation of model parameters, noise statistics, and noise truncation bounds, by solving a series of quadratic programs and nonlinear sets of equations.
Originele taal-2Engels
StatusGepubliceerd - sep. 2023
Evenement31st Workshop of the European Research Network on System Identification - Stockholm, Zweden
Duur: 24 sep. 202327 sep. 2023
Congresnummer: 31
https://www.kth.se/ernsi2023

Congres

Congres31st Workshop of the European Research Network on System Identification
Verkorte titelERNSI 2023
Land/RegioZweden
StadStockholm
Periode24/09/2327/09/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Identification of Linear State-Space Models Subject to Truncated Gaussian Disturbances'. Samen vormen ze een unieke vingerafdruk.

Citeer dit