Identification of diffusively coupled linear networks through structured polynomial models

E.M.M. Kivits, Paul M.J. Van den Hof (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
67 Downloads (Pure)

Samenvatting

Physical dynamic networks most commonly consist of interconnections of physical components that can be described by diffusive couplings. These diffusive couplings imply that the cause-effect relationships in the interconnections are symmetric, and therefore, physical dynamic networks can be represented by undirected graphs. This article shows how prediction error identification methods developed for linear time-invariant systems in polynomial form can be configured to consistently identify the parameters and the interconnection structure of diffusively coupled networks. Furthermore, a multistep least squares convex optimization algorithm is developed to solve the nonconvex optimization problem that results from the identification method.

Originele taal-2Engels
Pagina's (van-tot)3513-3528
Aantal pagina's16
TijdschriftIEEE Transactions on Automatic Control
Volume68
Nummer van het tijdschrift6
Vroegere onlinedatum18 jul. 2022
DOI's
StatusGepubliceerd - 1 jun. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Identification of diffusively coupled linear networks through structured polynomial models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit